Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 77
Filter
1.
Blood ; 143(14): 1322-1323, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38573608

Subject(s)
Genomics
4.
Nat Commun ; 15(1): 3016, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589367

ABSTRACT

Myelodysplastic syndromes (MDS) with mutated SF3B1 gene present features including a favourable outcome distinct from MDS with mutations in other splicing factor genes SRSF2 or U2AF1. Molecular bases of these divergences are poorly understood. Here we find that SF3B1-mutated MDS show reduced R-loop formation predominating in gene bodies associated with intron retention reduction, not found in U2AF1- or SRSF2-mutated MDS. Compared to erythroblasts from SRSF2- or U2AF1-mutated patients, SF3B1-mutated erythroblasts exhibit augmented DNA synthesis, accelerated replication forks, and single-stranded DNA exposure upon differentiation. Importantly, histone deacetylase inhibition using vorinostat restores R-loop formation, slows down DNA replication forks and improves SF3B1-mutated erythroblast differentiation. In conclusion, loss of R-loops with associated DNA replication stress represents a hallmark of SF3B1-mutated MDS ineffective erythropoiesis, which could be used as a therapeutic target.


Subject(s)
Myelodysplastic Syndromes , R-Loop Structures , Humans , Splicing Factor U2AF/genetics , Serine-Arginine Splicing Factors/genetics , RNA Splicing Factors/genetics , Myelodysplastic Syndromes/drug therapy , Myelodysplastic Syndromes/genetics , Mutation , Transcription Factors/genetics , Phosphoproteins/genetics
5.
Blood ; 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38452207

ABSTRACT

We previously demonstrated that a reduced-intensity chemotherapy schedule can safely replace Hyper-CVAD cycle 1 when combined with imatinib in adults with Philadelphia-positive (Ph+) acute lymphoblastic leukemia (ALL). In the present randomized GRAAPH-2014 trial, we used nilotinib and addressed the omission of cytarabine (Ara-C) in consolidation. The primary objective was the major molecular response (MMR) rate measured by BCR::ABL1 quantification after cycle 4 (end of consolidation). All patients were eligible for allogeneic stem cell transplant (SCT), whereas those in MMR could receive autologous SCT, followed by 2-year imatinib maintenance in both cases. After the enrollment of 156 out of 265 planed patients, the data and safety monitoring board decided to hold the randomization due to an excess of relapse in the investigational arm. Among the 155 evaluable patients, 77 received Ara-C during consolidation (arm A) and 78 did not (arm B). Overall, 133 (85%) patients underwent SCT, 93 allogeneic, 40 autologous. The non-inferiority endpoint regarding MMR was reached with 71.1% (arm A) and 77.2% (arm B) of patients reaching MMR. However, the 4-year cumulative incidence of relapse was higher in arm B as compared to arm A (31.3% [95% CI, 21.1-41.9%] versus 13.2% [95% CI, 6.7-21.9%]; p=0.017), which translated in a lower relapse-free survival. With a median follow-up of 3.8 years, 4-year overall survival (OS) was 79.0% (95% CI, 70.6-89.3%) in arm A versus 73.4% (95% CI, 63.9-84.4%) in arm B (p=0.35). Despite a non-inferior rate of MMR, more relapses were observed when ARA-C was omitted without impact on survival. ClinicalTrials.gov ID, NCT02611492.

10.
Blood ; 142(21): 1806-1817, 2023 11 23.
Article in English | MEDLINE | ID: mdl-37595275

ABSTRACT

KMT2A-rearranged (KMT2A-r) B-cell precursor acute lymphoblastic leukemia (BCP-ALL) is widely recognized as a high-risk leukemia in both children and adults. However, there is a paucity of data on adults treated in recent protocols, and the optimal treatment strategy for these patients is still a matter of debate. In this study, we set out to refine the prognosis of adult KMT2A-r BCP-ALL treated with modern chemotherapy regimen and investigate the prognostic impact of comutations and minimal residual disease (MRD). Of 1091 adult patients with Philadelphia-negative BCP-ALL enrolled in 3 consecutive trials from the Group for Research on Adult Acute Lymphoblastic Leukemia (GRAALL), 141 (12.9%) had KMT2A-r, with 5-year cumulative incidence of relapse (CIR) and overall survival (OS) rates of 40.7% and 53.3%, respectively. Molecular profiling highlighted a low mutational burden in this subtype, reminiscent of infant BCP-ALL. However, the presence of TP53 and/or IKZF1 alterations defined a subset of patients with significantly poorer CIR (69.3% vs 36.2%; P = .001) and OS (28.1% vs 60.7%; P = .006) rates. Next, we analyzed the prognostic implication of MRD measured after induction and first consolidation, using both immunoglobulin (IG) or T-cell receptor (TR) gene rearrangements and KMT2A genomic fusion as markers. In approximately one-third of patients, IG/TR rearrangements were absent or displayed clonal evolution during the disease course, compromising MRD monitoring. In contrast, KMT2A-based MRD was highly reliable and strongly associated with outcome, with early good responders having an excellent outcome (3-year CIR, 7.1%; OS, 92.9%). Altogether, our study reveals striking heterogeneity in outcomes within adults with KMT2A-r BCP-ALL and provides new biomarkers to guide risk-based therapeutic stratification.


Subject(s)
Precursor B-Cell Lymphoblastic Leukemia-Lymphoma , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Child , Humans , Adult , Neoplasm, Residual/genetics , Prognosis , Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/therapy , Recurrence , Immunoglobulins , Risk Assessment
11.
Leukemia ; 37(6): 1245-1253, 2023 06.
Article in English | MEDLINE | ID: mdl-37085611

ABSTRACT

Tandem duplications (TDs) of the UBTF gene have been recently described as a recurrent alteration in pediatric acute myeloid leukemia (AML). Here, by screening 1946 newly diagnosed adult AML, we found that UBTF-TDs occur in about 3% of patients aged 18-60 years, in a mutually exclusive pattern with other known AML subtype-defining alterations. The characteristics of 59 adults with UBTF-TD AML included young age (median 37 years), low bone marrow (BM) blast infiltration (median 25%), and high rates of WT1 mutations (61%), FLT3-ITDs (51%) and trisomy 8 (29%). BM morphology frequently demonstrates dysmyelopoiesis albeit modulated by the co-occurrence of FLT3-ITD. UBTF-TD patients have lower complete remission (CR) rates (57% after 1 course and 76% after 2 courses of intensive chemotherapy [ICT]) than UBTF-wild-type patients. In patients enrolled in the ALFA-0702 study (n = 614 patients including 21 with UBTF-TD AML), the 3-year disease-free survival (DFS) and overall survival of UBTF-TD patients were 42.9% (95%CI: 23.4-78.5%) and 57.1% (95%CI: 39.5-82.8%) and did not significantly differ from those of ELN 2022 intermediate/adverse risk patients. Finally, the study of paired diagnosis and relapsed/refractory AML samples suggests that WT1-mutated clones are frequently selected under ICT. This study supports the recognition of UBTF-TD AML as a new AML entity in adults.


Subject(s)
Leukemia, Myeloid, Acute , Adult , Child , Humans , Disease-Free Survival , fms-Like Tyrosine Kinase 3/genetics , Leukemia, Myeloid, Acute/genetics , Mutation , Prognosis , Remission Induction
13.
Haematologica ; 108(9): 2369-2379, 2023 09 01.
Article in English | MEDLINE | ID: mdl-36951151

ABSTRACT

Debates on the role and timing of allogeneic hemtopoietic stem cell transplantation (HSCT) in acute myelogenous leukemia (AML) have persisted for decades. Time to transplant introduces an immortal time and current treatment algorithm mainly relies on the European LeukemiaNet disease risk classification. Previous studies are also limited to age groups, remission status and other ill-defined parameters. We studied all patients at diagnosis irrespective of age and comorbidities to estimate the cumulative incidence and potential benefit or disadvantage of HSCT in a single center. As a time-dependent covariate, HSCT improved overall survival in intermediate- and poor-risk patients (hazard ratio =0.51; P=0.004). In goodrisk patients only eight were transplanted in first complete remission. Overall, the 4-year cumulative incidence of HSCT was only 21.9% but was higher (52.1%) for patients in the first age quartile (16-57 years old) and 26.4% in older patients (57-70 years old) (P<0.001). It was negligible in patients older than 70 years reflecting our own transplant policy but also barriers to transplantation (comorbidities and remission status). However, HSCT patients need to survive, be considered eligible both by the referring and the HSCT physicians and have a suitable donor to get transplantation. We, thus, comprehensively analyzed the complete decision-making and outcome of all our AML patients from diagnosis to last followup to decipher how patient allocation and therapy inform the value of HSCT. The role of HSCT in AML is shifting with broad access to different donors including haploidentical ones. Thus, it may (or may not) lead to increased numbers of allogeneic HSCT in AML in adults.


Subject(s)
Hematopoietic Stem Cell Transplantation , Leukemia, Myeloid, Acute , Adult , Humans , Aged , Adolescent , Young Adult , Middle Aged , Transplantation, Homologous , Leukemia, Myeloid, Acute/therapy , Remission Induction , Proportional Hazards Models , Retrospective Studies
14.
Nat Commun ; 14(1): 588, 2023 02 03.
Article in English | MEDLINE | ID: mdl-36737440

ABSTRACT

Myelodysplastic syndromes (MDS) are clonal hematopoietic disorders, representing high risk of progression to acute myeloid leukaemia, and frequently associated to somatic mutations, notably in the epigenetic regulator TET2. Natural Killer (NK) cells play a role in the anti-leukemic immune response via their cytolytic activity. Here we show that patients with MDS clones harbouring mutations in the TET2 gene are characterised by phenotypic defects in their circulating NK cells. Remarkably, NK cells and MDS clones from the same patient share the TET2 genotype, and the NK cells are characterised by increased methylation of genomic DNA and reduced expression of Killer Immunoglobulin-like receptors (KIR), perforin, and TNF-α. In vitro inhibition of TET2 in NK cells of healthy donors reduces their cytotoxicity, supporting its critical role in NK cell function. Conversely, NK cells from patients treated with azacytidine (#NCT02985190; https://clinicaltrials.gov/ ) show increased KIR and cytolytic protein expression, and IFN-γ production. Altogether, our findings show that, in addition to their oncogenic consequences in the myeloid cell subsets, TET2 mutations contribute to repressing NK-cell function in MDS patients.


Subject(s)
Dioxygenases , Myelodysplastic Syndromes , Humans , Methylation , Myelodysplastic Syndromes/metabolism , Killer Cells, Natural , Azacitidine/pharmacology , Receptors, KIR/genetics , Mutation , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Dioxygenases/metabolism
15.
Blood Cancer Discov ; 4(2): 134-149, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36630200

ABSTRACT

Low hypodiploidy defines a rare subtype of B-cell acute lymphoblastic leukemia (B-ALL) with a dismal outcome. To investigate the genomic basis of low-hypodiploid ALL (LH-ALL) in adults, we analyzed copy-number aberrations, loss of heterozygosity, mutations, and cytogenetics data in a prospective cohort of Philadelphia (Ph)-negative B-ALL patients (n = 591, ages 18-84 years), allowing us to identify 80 LH-ALL cases (14%). Genomic analysis was critical for evidencing low hypodiploidy in many cases missed by cytogenetics. The proportion of LH-ALL within Ph-negative B-ALL dramatically increased with age, from 3% in the youngest patients (under 40 years old) to 32% in the oldest (over 55 years old). Somatic TP53 biallelic inactivation was the hallmark of adult LH-ALL, present in virtually all cases (98%). Strikingly, we detected TP53 mutations in posttreatment remission samples in 34% of patients. Single-cell proteogenomics of diagnosis and remission bone marrow samples evidenced a preleukemic, multilineage, TP53-mutant clone, reminiscent of age-related clonal hematopoiesis. SIGNIFICANCE: We show that low-hypodiploid ALL is a frequent entity within B-ALL in older adults, relying on somatic TP53 biallelic alteration. Our study unveils a link between aging and low-hypodiploid ALL, with TP53-mutant clonal hematopoiesis representing a preleukemic reservoir that can give rise to aneuploidy and B-ALL. See related commentary by Saiki and Ogawa, p. 102. This article is highlighted in the In This Issue feature, p. 101.


Subject(s)
Lymphoma, B-Cell , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , Aged , Adult , Adolescent , Young Adult , Middle Aged , Aged, 80 and over , Clonal Hematopoiesis , Prospective Studies , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Mutation , Aneuploidy , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Tumor Suppressor Protein p53/genetics
17.
J Clin Oncol ; 41(1): 132-142, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36054881

ABSTRACT

PURPOSE: Secondary myeloid neoplasms (sMNs) remain the most serious long-term complications in patients with aplastic anemia (AA) and paroxysmal nocturnal hemoglobinuria (PNH). However, sMNs lack specific predictors, dedicated surveillance measures, and early therapeutic interventions. PATIENTS AND METHODS: We studied a multicenter, retrospective cohort of 1,008 patients (median follow-up 8.6 years) with AA and PNH to assess clinical and molecular determinants of clonal evolution. RESULTS: Although none of the patients transplanted upfront (n = 117) developed clonal complications (either sMN or secondary PNH), the 10-year cumulative incidence of sMN in nontransplanted cases was 11.6%. In severe AA, older age at presentation and lack of response to immunosuppressive therapy were independently associated with increased risk of sMN, whereas untreated patients had the highest risk among nonsevere cases. The elapsed time from AA to sMN was 4.5 years. sMN developed in 94 patients. The 5-year overall survival reached 40% and was independently associated with bone marrow blasts at sMN onset. Myelodysplastic syndrome with high-risk phenotypes, del7/7q, and ASXL1, SETBP1, RUNX1, and RAS pathway gene mutations were the most frequent characteristics. Cross-sectional studies of clonal dynamics from baseline to evolution revealed that PIGA/human leukocyte antigen lesions decreased over time, being replaced by clones with myeloid hits. PIGA and BCOR/L1 mutation carriers had a lower risk of sMN progression, whereas myeloid driver lesions marked the group with a higher risk. CONCLUSION: The risk of sMN in AA is associated with disease severity, lack of response to treatment, and patients' age. sMNs display high-risk morphological, karyotypic, and molecular features. The landscape of acquired somatic mutations is complex and incompletely understood and should be considered with caution in medical management.


Subject(s)
Anemia, Aplastic , Hemoglobinuria, Paroxysmal , Humans , Anemia, Aplastic/genetics , Anemia, Aplastic/pathology , Anemia, Aplastic/therapy , Hemoglobinuria, Paroxysmal/genetics , Retrospective Studies , Cross-Sectional Studies , Clonal Evolution/genetics
19.
J Clin Med ; 11(22)2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36431240

ABSTRACT

Ph+ (BCR::ABL+) B-ALL was considered to be high risk, but recent advances in BCR::ABL-targeting TKIs has shown improved outcomes in combination with backbone chemotherapy. Nevertheless, new treatment strategies are needed, including approaches without chemotherapy for elderly patients. LIMK1/2 acts downstream from various signaling pathways, which modifies cytoskeleton dynamics via phosphorylation of cofilin. Upstream of LIMK1/2, ROCK is constitutively activated by BCR::ABL, and upon activation, ROCK leads to the phosphorylation of LIMK1/2, resulting in the inactivation of cofilin by its phosphorylation and subsequently abrogating its apoptosis-promoting activity. Here, we demonstrate the anti-leukemic effects of a novel LIMK1/2 inhibitor (LIMKi) CEL_Amide in vitro and in vivo for BCR::ABL-driven B-ALL. The IC50 value of CEL_Amide was ≤1000 nM in BCR::ABL+ TOM-1 and BV-173 cells and induced dose-dependent apoptosis and cell cycle arrest in these cell lines. LIMK1/2 were expressed in BCR::ABL+ cell lines and patient cells and LIMKi treatment decreased LIMK1 protein expression, whereas LIMK2 expression was unaffected. As expected, CEL_Amide exposure caused specific activating downstream dephosphorylation of cofilin in cell lines and primary cells. Combination experiments with CEL_Amide and BCR::ABL TKIs imatinib, dasatinib, nilotinib, and ponatinib were synergistic for the treatment of both TOM-1 and BV-173 cells. CDKN2Ako/BCR::ABL1+ B-ALL cells were transplanted in mice, which were treated with combinations of CEL_Amide and nilotinib or ponatinib, which significantly prolonged their survival. Altogether, the LIMKi CEL_Amide yields activity in Ph+ ALL models when combined with BCR::ABL-targeting TKIs, showing promising synergy that warrants further investigation.

SELECTION OF CITATIONS
SEARCH DETAIL
...